Comparison of Hybrid Classifiers for Crop Classification Using Normalized Difference Vegetation Index Time Series: A Case Study for Major Crops in North Xinjiang, China

نویسندگان

  • Pengyu Hao
  • Li Wang
  • Zheng Niu
  • Quazi K. Hassan
چکیده

A range of single classifiers have been proposed to classify crop types using time series vegetation indices, and hybrid classifiers are used to improve discriminatory power. Traditional fusion rules use the product of multi-single classifiers, but that strategy cannot integrate the classification output of machine learning classifiers. In this research, the performance of two hybrid strategies, multiple voting (M-voting) and probabilistic fusion (P-fusion), for crop classification using NDVI time series were tested with different training sample sizes at both pixel and object levels, and two representative counties in north Xinjiang were selected as study area. The single classifiers employed in this research included Random Forest (RF), Support Vector Machine (SVM), and See 5 (C 5.0). The results indicated that classification performance improved (increased the mean overall accuracy by 5%~10%, and reduced standard deviation of overall accuracy by around 1%) substantially with the training sample number, and when the training sample size was small (50 or 100 training samples), hybrid classifiers substantially outperformed single classifiers with higher mean overall accuracy (1%~2%). However, when abundant training samples (4,000) were employed, single classifiers could achieve good classification accuracy, and all classifiers obtained similar performances. Additionally, although object-based classification did not improve accuracy, it resulted in greater visual appeal, especially in study areas with a heterogeneous cropping pattern.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Moderate-Resolution Temporal NDVI Profiles for High-Resolution Crop Mapping in Years of Absent Ground Reference Data: A Case Study of Bole and Manas Counties in Xinjiang, China

Most methods used for crop classification rely on the ground-reference data of the same year, which leads to considerable financial and labor cost. In this study, we presented a method that can avoid the requirements of a large number of ground-reference data in the classification year. Firstly, we extracted the Normalized Difference Vegetation Index (NDVI) time series profiles of the dominant ...

متن کامل

Multi-Year Mapping of Maize and Sunflower in Hetao Irrigation District of China with High Spatial and Temporal Resolution Vegetation Index Series

Crop identification in large irrigation districts is important for crop yield estimation, hydrological simulation, and agricultural water management. Remote sensing provides an opportunity to visualize crops in the regional scale. However, the use of coarse resolution remote sensing images for crop identification usually causes great errors due to the presence of mixed pixels in regions with co...

متن کامل

Analysis of Time-Series MODIS 250 m Vegetation Index Data for Crop Classification in the U.S. Central Great Plains

The global environmental change research community requires improved and up-to-date land use/land cover (LULC) datasets at regional to global scales to support a variety of science and policy applications. Considerable strides have been made to improve large-area LULC datasets, but little emphasis has been placed on thematically detailed crop mapping, despite the considerable influence of manag...

متن کامل

Random Forest Classification of Wetland Landcovers from Multi-Sensor Data in the Arid Region of Xinjiang, China

The wetland classification from remotely sensed data is usually difficult due to the extensive seasonal vegetation dynamics and hydrological fluctuation. This study presents a random forest classification approach for the retrieval of the wetland landcover in the arid regions by fusing the Pléiade-1B data with multi-date Landsat-8 data. The segmentation of the Pléiade-1B multispectral image dat...

متن کامل

Comparison of Growth Curves and Seasonality Parameters of Main Field crops in a High Elevation Mountain Area based on TIMESAT Program

Time series Normalized Difference Vegetation Index (NDVI) has been shown to provide useful data that can be applied to study vegetable phenologies and crop calendars, and much research has been conducted with it in the main agricultural regions of China. However, few studies using NDVI have been conducted in the Qinghai-Tibet Plateau where agriculture is often limited in the valley and piedmont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015